DNA-like Structure of Surfaces

Moody T. Chu

(Joint work with Zhenyue Zhang)

North Carolina State University

November 17-18, 2013 @ Chinese University of Hong Kong International Workshop on Numerical Linear Algebra with Applications (in honor of the 75th birthday of Prof. Robert Plemmons)

Disclaimer

- This talk is about mathematics, not biology.
- ▶ This talk is elementary, involving only fundamental calculus.
- ▶ This work is just a beginning. More need be done.

- ► The importance of DNA is well documented.
 - Found in all living organisms.
 - Supplies the information for building all cell proteins.

- Basic structure of DNA:
 - Two strands coiled around to form a double helix.
 - Each rung of the spiral ladder consists of a pair of chemical groups called bases (of which there are four types)
 - Base pairing combines A to T and C to G, and the sequence on one strand is complementary to that on the other.
 - The specific sequence of bases constitutes the genetic information.

Take Home Message

- ▶ There is a considerably similar structure in all smooth functions.
- Will the structure determine the properties of the underlying function?
 - Sequencing: to interpret or to decode...
 - · Synthesizing: to combine or to form...

Applications

Outline

Basics

Gradient Adaption
Singular Value Decomposition
Deformation Effect

Singular Curves

Dynamical Systems
Examples
Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications

Making Mosaics

Basics

Gradient Adaption
Singular Value Decomposition
Deformation Effect

Singular Curves

Dynamical Systems
Examples
Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications

Making Mosaics

Basics

Gradient Adaption Singular Value Decomposition Deformation Effect

Singular Curves

Dynamical Systems Examples Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications

Making Mosaics

Basics

Gradient Adaption
Singular Value Decomposition
Deformation Effect

Singular Curves

Dynamical Systems Examples Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications
Making Mosaics

Basics

Gradient Adaption
Singular Value Decomposition
Deformation Effect

Singular Curves

Dynamical Systems Examples Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications

Making Mosaics

Basics

Gradient Adaption
Singular Value Decomposition
Deformation Effect

Singular Curves

Dynamical Systems Examples Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications

Making Mosaics

Gradient

Given a scalar function

$$\eta: \mathbb{R}^n \longrightarrow \mathbb{R},$$

define the gradient of η by

$$\nabla \eta := \left[\frac{\partial \eta}{\partial x_1}, \dots, \frac{\partial \eta}{\partial x_n} \right].$$

- Significance:
 - Points in the direction where the function η(x) ascends most rapidly.
 - Attainable maximum rate of change is precisely $\|\nabla \eta(\mathbf{x})\|$.

Gradient Adaption

- Heat transfer by conduction.
 - Opposite to the temperature gradient and is perpendicular to the equal-temperature surfaces.
- Osmosis.
 - Passive transport of substances across the cell membrane down a concentration gradient without requiring energy use.
- Image gradients.
 - Fundamental building blocks in image processing such as edge detection and computer vision.

Given a vector function

 $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$

$$extit{J} f := \left[egin{array}{ccc} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{array}
ight].$$

- A natural generalization of the gradient.
- Both offer linear approximations.
- Does not indicate critical directions or rates of change?

Singular Value Decomposition

▶ Any given matrix $A \in \mathbb{R}^{m \times n}$ enjoys a factorization of the form

$$A = V \Sigma U^{\top}$$
.

- Known as a singular value decomposition (SVD) of A.
- Singular vectors:
 - $V \in \mathbb{R}^{m \times m}$, $U \in \mathbb{R}^{n \times n}$ are orthogonal matrices.
- Singular values:
 - $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal with nonnegative elements

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\kappa} > \sigma_{\kappa+1} = \ldots = 0.$$

κ = rank(A).

Variational Formulation

- Many ways to characterize the SVD of a matrix A.
- Cast as an optimization problem over the unit disk:

$$\max_{\|\mathbf{x}\|=1}\|A\mathbf{x}\|.$$

- Unit stationary points $\mathbf{u}_i \in \mathbb{R}^n$ = Right singular vectors.
- Singular values = ||Au_i||.

Geometric Meaning of SVD

- In the neighborhood of the origin:
 - Right singular vectors = Directions where the linear map A changes most critically.
 - Singular values = Extent of deformation.
- Similar role by the left singular vectors by the duality theory.

Linear Approximation

Nearby any given point $\tilde{\mathbf{x}}$, approximate $f(\mathbf{x})$ by the affine map

$$g(\mathbf{x}) := f(\widetilde{\mathbf{x}}) + f'(\widetilde{\mathbf{x}})(\mathbf{x} - \widetilde{\mathbf{x}}).$$

Under the function g,

000

- The unit sphere centered at x gets mapped into an ellipsoid centered at f(x).
- Semi-axes are aligned with the left singular vectors of $f'(\tilde{\mathbf{x}})$.
- Semi-axis lengths are precisely the singular values.

Infinitesimal Deformation

- Reducing the radius of the sphere,
 - Downsizes the ellipsoid proportionally.
 - Does not alter the directions of the semi-axes.
 - g becomes a more accurate approximation of f.
- The gradually reduced ellipsoids silhouette the images of the gradually reduced spheres under f.
- ▶ The SVD information of the linear operator $f'(\tilde{\mathbf{x}})$ manifests the infinitesimal deformation property of the nonlinear map f at $\tilde{\mathbf{x}}$.

Directional Derivatives

Consider the norm of the directional derivative

$$\lim_{t\to 0}\left\|\frac{f(\widetilde{\mathbf{x}}+t\mathbf{u})-f(\widetilde{\mathbf{x}})}{t}\right\|=\|f'(\widetilde{\mathbf{x}})\mathbf{u}\|.$$

- u is an arbitrary unit vector.
- Along which direction will the norm of the directional derivative (Gâteaux derivative) be maximized?
 - The right singular vectors of $f'(\widetilde{\mathbf{x}})$!
- ► This is the generalization of the conventional gradient to vector functions.

Singular Vector Field

- ▶ At every point $\mathbf{x} \in \mathbb{R}^n$,
 - Have a set of orthonormal vectors pointing in particular directions related to the variation of f.
 - These orthonormal vectors form a natural frame point by point.
- Tracking down the "motion" of these frames might help to reveal some innate peculiarities of the underlying function f.

Dynamical Systems

- ▶ Let $(\sigma_i, \mathbf{u}_i, \mathbf{v}_i)$ = the *i*th singular triplet of $f'(\mathbf{x}_i)$. Interested in the solution flows:
 - $\mathbf{x}_i(t) \in \mathbb{R}^n$ defined by

$$\dot{\mathbf{x}}_i := \pm \mathbf{u}_i(\mathbf{x}_i), \quad \mathbf{x}_i(0) = \widetilde{\mathbf{x}}.$$

• $\mathbf{y}_i(t) \in \mathbb{R}^m$ defined by

$$\dot{\mathbf{y}}_i := \pm \sigma_i(\mathbf{x}_i)\mathbf{v}_i(\mathbf{x}_i), \quad \mathbf{y}_i(0) = f(\widetilde{\mathbf{x}}).$$

- Minor notes:
 - Scaling ensures $\mathbf{y}_i(t) = f(\mathbf{x}_i(t))$.
 - Select the sign \pm so as to avoid discontinuity jump.
 - Integrate in both forward and backward time.

Critical Points

- The vector field may not be well defined at certain points.
 - When singular values coalesce.
 - f'(x) has multiple singular vector
- Not an issue of the factorization.
 - An analytic factorization as a whole for a function analytic in x does exist.
 - The continuity of a fixed order singular vectors, say, $\mathbf{u}_1(\mathbf{x})$, may not be maintained.

First Singular Curve

- Moves in the direction along which f(x) changes most rapidly, when measured in the Euclidean norm.
- Serves as the backbone in the moving frame.
- ▶ Can be demonstrated and explained in the case $f: \mathbb{R}^2 \to \mathbb{R}^n$.
 - Parametric surfaces.
- More need be done in higher dimensional spaces.

Example 1

$$\left[\begin{array}{c} \sin{(x_1+x_2)} + \cos{(x_2)} - 1 \\ \cos{(2\,x_1)} + \sin{(x_2)} - 1 \end{array}\right]$$

Example 2a

$$\left[\begin{array}{c} e^{x_1}\cos(x_2) \\ 20e^{x_1}\sin(x_1) \end{array}\right]$$

Example 2b

$$\left[\begin{array}{c} e^{x_1}\cos(x_2) \\ e^{x_1}\sin(x_1) \\ x_2 \end{array}\right]$$

$$\begin{bmatrix} 4 + x_1 \cos(x_2/2) \\ x_2 \\ x_1 \sin(x_1 x_2/2) \end{bmatrix}$$

Example 4

$$\left[\begin{array}{c} e^{x_1}\cos(20x_2) \\ 20e^{\sin(x_2)}\sin(x_1) \end{array}\right]$$

Right Singular Curves for Example 4

Example 5

$$\begin{bmatrix} \sin(x_1^2 + x_2^2)\cos(x_2) \\ 2e^{-2x_2^2x_1^2}\cos(10\sin(x_1)) \end{bmatrix}$$

Right Singular Curves for Example 5

Example 7

$$\begin{bmatrix} x_1 - \frac{x_1^2}{3} + x_1 x_2^2 \\ x_2 - \frac{x_2^3}{6} + x_2 x_1^3 \\ x_1^2 - x_2^3 \end{bmatrix}$$

Example 8

$$\begin{bmatrix} \frac{1}{2} \left(2\rho^2 - \phi^2 - \psi^2 + 2\phi\psi(\phi^2 - \psi^2) + \psi\rho(\rho^2 - \psi^2) + \rho\phi(\phi^2 - \rho^2) \right) \\ \frac{\sqrt{3}}{2} \left(\phi^2 - \psi^2 + (\psi\rho(\psi^2 - \rho^2) + \rho\phi(\phi^2 - \rho^2)) \right) \\ (\rho + \phi + \psi) \left((\rho + \phi + \psi)^3 + 4(\phi - \rho)(\psi - \phi)(\rho - \psi) \right) \end{bmatrix}$$
with
$$\begin{cases} \rho = \cos(x_1)\sin(x_2) \\ \phi = \sin(x_1)\sin(x_2) \\ \psi = \cos(x_2) \end{cases}$$

Right Singular Curves for Example 8

A Closer Look

Write

$$f'(\mathbf{x}) = [\mathbf{a}_1(\mathbf{x}), \mathbf{a}_2(\mathbf{x})].$$

Define scalar functions

$$\begin{cases} n(\mathbf{x}) := \|\mathbf{a}_2(\mathbf{x})\|^2 - \|\mathbf{a}_1(\mathbf{x})\|^2, \\ o(\mathbf{x}) := 2\mathbf{a}_1(\mathbf{x})^{\mathsf{T}}\mathbf{a}_2(\mathbf{x}). \end{cases}$$

- $n(\mathbf{x})$ measures the disparity of lengths.
- o(x) measures nearness of orthogonality.

Critical Curves

Define

$$\begin{cases} \mathcal{N} := \{\mathbf{x} \in \mathbb{R}^n \mid n(\mathbf{x}) = 0\}, \\ \mathcal{O} := \{\mathbf{x} \in \mathbb{R}^n \mid o(\mathbf{x}) = 0\}. \end{cases}$$

- ▶ Each forms generically a 1-dimensional manifold in \mathbb{R}^2 .
 - Possibly composed of multiple curves or loops.
 - Will play the role of "polynucleotide" connecting a string of interesting points.

First Right Singular Pair

▶ The first singular value of $f'(\mathbf{x})$:

00000000000000

$$\sigma_1(\mathbf{x}) := \left(\frac{1}{2} \left(\|\mathbf{a}_1(\mathbf{x})\|^2 + \|\mathbf{a}_2(\mathbf{x})\|^2 + \sqrt{o(\mathbf{x})^2 + n(\mathbf{x})^2} \right) \right)^{1/2}$$

The first right singular vector:

$$\mathbf{u}_1(\mathbf{x}) := \frac{\pm 1}{\sqrt{1 + \omega(\mathbf{x})^2}} \left[\begin{array}{c} \omega(\mathbf{x}) \\ 1 \end{array} \right].$$

with

$$\omega(\mathbf{x}) := \begin{cases} \frac{o(\mathbf{x})}{n(\mathbf{x}) + \sqrt{o(\mathbf{x})^2 + n(\mathbf{x})^2}}, & \text{if } n(\mathbf{x}) > 0, \\ \frac{-n(\mathbf{x}) + \sqrt{o(\mathbf{x})^2 + n(\mathbf{x})^2}}{o(\mathbf{x})}, & \text{if } n(\mathbf{x}) < 0. \end{cases}$$

• Take the limit if $\omega(\mathbf{x})$ becomes infinity.

Crossings

- When singular curves coming across critical curves, their tangent vectors point in specific directions.
- Orientations of tangent vectors:
 - At $\mathcal{N} \mathcal{O}$, are parallel to either $[1, 1]^{\top}$ or $[1, -1]^{\top}$, depending on whether $o(\mathbf{x})$ is positive or negative.
 - At $\mathcal{O} \mathcal{N}$, are parallel to $[0, 1]^{\top}$ or $[1, 0]^{\top}$, depending on whether $n(\mathbf{x})$ is positive or negative.

Singular Points

- $\triangleright \mathcal{N} \cap \mathcal{O} = \text{singular points}.$
- At singular points.
 - Singular values coalesce.
 - The (right) singular vectors become ambiguous.
 - Singular curves are "terminated" or "reborn".
- ightharpoonup The angles cut by $\mathcal N$ and $\mathcal O$ at the singular point affects the intriguing dynamics observed.
 - The 1-dimensional manifolds $\mathcal N$ and $\mathcal O$ string singular points together along their strands.

0000000000000

Critical Curves and Singular Curves for Example 1

00000000000000

Critical Curves for Example 4

Critical Curves for Example 5

0000000000000

Curvilinear Coordinate System

- ▶ Denote the α -halves portions of \mathcal{N} and \mathcal{O} by by n_{α} and o_{α} , where
 - The crossing singular vectors are parallel to the unit vectors $\mathbf{u}_{n_{\alpha}} := \frac{1}{\sqrt{2}}[1,1]^{\top} \text{ and } \mathbf{u}_{o_{\alpha}} := [0,1]^{\top}.$
- ▶ Flag the sides of n_{α} and o_{α} by arrows .
 - Naturally divides the neighborhood of x₀ into "quadrants" distinguished by the signs $(sgn(n(\mathbf{x})), sgn(o(\mathbf{x})))$.
- When the "orientation" is changed, the nearby dynamical behavior might also change its topology.

A Scenario of Propellant

- Red segments = tangent vectors crossing the critical curves.
 - Take into account the signs of o(x) and n(x).
- Invariant on each half of the critical curves.
- ▶ Flows of singular curves near \mathbf{x}_0 should move away from \mathbf{x}_0 as a repellant.

A Scenario of Roundabout

Generic Behaviors

- ▶ Divide the plane into eight sectors with a central angle $\frac{\pi}{4}$.
- \triangleright Relative position of n_{α} and o_{α} with respect to these sectors is critical for deciding the local behavior.

Mutative Cases

Second Derivative

▶ Express $\omega(\mathbf{x})$ as

$$\omega(\mathbf{x}) := \begin{cases} \operatorname{sgn}\left(o(\mathbf{x})\right) - \frac{n(\mathbf{x})}{o(\mathbf{x})} + \frac{\operatorname{sgn}(o(\mathbf{x}))n(\mathbf{x})^2}{2o(\mathbf{x})^2} + O\left(n(\mathbf{x})^3\right), & \operatorname{near}\ n(\mathbf{x}) = 0, \\ \frac{o(\mathbf{x})}{2n(\mathbf{x})} - \frac{o(\mathbf{x})^3}{8n(\mathbf{x})^3} + \frac{o(\mathbf{x})^5}{16n(\mathbf{x})^5} + O\left(o(\mathbf{x})^7\right), & \operatorname{near}\ o(\mathbf{x}) = 0 \text{ and if } n(\mathbf{x}) > 0, \\ \frac{-1}{\frac{o(\mathbf{x})}{2n(\mathbf{x})} - \frac{o(\mathbf{x})^3}{8n(\mathbf{x})^3} + \frac{o(\mathbf{x})^5}{16n(\mathbf{x})^5} + O\left(o(\mathbf{x})^7\right)}, & \operatorname{near}\ o(\mathbf{x}) = 0 \text{ and if } n(\mathbf{x}) < 0. \end{cases}$$

- The first derivative of $\mathbf{x}_1(t)$ is related to $\omega(\mathbf{x}_1(t))$.
 - The first term of $\omega(\mathbf{x})$ estimates the second derivative of $\mathbf{x}_1(t)$.
- · Can characterize the concavity property observed.

Variation near N

- ▶ In the direction $\mathbf{u}_{n_{\alpha}}$, $\omega(\mathbf{x}(t))$ must be increased if $\mathbf{x}(t)$ moves to the side where $n(\mathbf{x}) < 0$.
 - The slope of $\mathbf{u}_1(\mathbf{x}(t))$ must be less than 1.
- ▶ Only four basic ways to cross \mathcal{N} .

Variation near \mathcal{O}

Four Bases along \mathcal{O}

Pairing

- Entire dynamics can be classified into 8 categories.
 - These base parings are Aa, Ac, Bb, Bd, Ca, Cc, Db, and Dd only, with no other possible combinations.
- Each base pairing results in 8 dynamics in the regular cases and 2 in the mutative cases.
 - Distinctive by their characteristic traits.
 - Fascinating, but no time in this talk.
- Identify each dynamics by two letters of base paring at the upper left corner.

Allowable Pairings with Two Polynucleotides

What happens to other pairings?

Trait Characterization

- Base pairings characterize dynamical details.
- Can also characterize the general behavior by a single quantity.
 - Define $\theta(n_{\alpha}, o_{\alpha})$ = Angles measured clockwise from τ_n and to τ_o .
 - Assume the generic condition that τ_n is not forming an angle π/4 with the north.
 - Singular point x₀ is
 - A repeller, if $0 < \theta(n_{\alpha}, o_{\alpha}) < \pi$.
 - A roundabout, if $\theta(n_{\alpha}, o_{\alpha}) > \pi$.
- Crossovers/hybrids are possible.
- •
- Too detailed to include here.

Making Mosaics

- Classify of all possible local behaviors.
 - A simplistic collection of "tiles" for the delicate and complex "mosaics".
- ightharpoonup Arrange pieces of mosaics along the strands of $\mathcal N$ and $\mathcal O$
 - Inherent characteristics of the local dynamics form the various patterns and variations of the underlying function.

A Comparison

- Consider examples 2a and 2b.
 - Easy critical curves.
 - \mathcal{O} forms horizontal lines with alternating $o(\mathbf{x})$ in between.
 - N forms closed loops.
 - One additional vertical, continuous, ogee ${\mathcal N}$ curve in Example 2b.
 - $n(\mathbf{x}) > 0$ inside the loops and to the left of the ogee curve.
- Similar, but different dynamics.

0.5

-0.5

Left Singular Curves

Boy's Face

A Jigsaw Puzzle

α –Halves and Base Pairings for Example 1

Conclusion

- Gradient adaption is an important mechanism in nature.
 - Generalization to the Jacobian does not "discriminate" directions. per se.
- Adaption information is coded in the singular curves.
 - Form a natural moving frame telling intrinsic properties per the given function.
 - Result in intricate and complicated patterns.
- Global behavior in general and interpretation in specific are not conclusively understood yet.
 - Two stands joined by singular points with one of eight distinct base pairings make up the underlying function.
 - Amazingly analogous to the DNA structure essential for all known forms of life.
- Are the patterns discovered "the trace of DNA" within an abstract, "inorganic" function?

